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THE DYNAMIC STABILITY OF AN ELASTIC COLUMN* 

S-D. F'DRTA 

Lyapunov's second method is used to investigate the stability of the 
rectilinear equilibrium modes of a non-linearly elastic thin rod 
(column) compressed at its end. Stability here is implied relative to 
certain integral characteristics, of the type of norms in Sobolev 
spaces; the analysis is carried out for all values of the problem 
parameter except the bifurcation values. 

The realm of problems connected with the Lagrange-Dirichlet 
equilibrium stability theorem and its converse involves specific 
difficulties when considered in the infinite-dimensional case: stability 
in infinite-dimensional systems is investigated relative to certain 
integral characteristics such as norms II/, and as the latter may be 
chosen with a certain degree of arbitrariness, different choices may 
result in different stability results. On the other hand, there is no 
relaxation of any of the difficulties encountered in the case of a 
finite number of degrees of freedom. 

We shall consider a certain natural mechanical system with a finite 
number of degrees of freedom. If the first non-trivial form of the 
potential energy expansion is positive-definite, the equilibrium 
position is stable. A similar statement has been proved for infinitely 
many dimensions as well /l-3/, using Lyapunov's direct method, and the 
total energy may play the role of the Lyapunov function. 

The situation with respect to instability is more complex. In the 
finite-dimensional case, if the first non-trivial form of the potential 
energy expansion may take negative values, instability may be 
demonstrated in many cases by means of a function proposed by Chetayev 
in I4f. A general theorem has been proved 111 for instability in 
infinitely many dimensions, relying on an analoque of Chetayev's 
function. Such functions have also been used /5, 61 to prove the 
instability of equilibrium in specific linear systems with an infinite 
number of degrees of freedom. 

However, Chetayev's functions /4/ are not suitable tools to prove 
the instability of equilibrium in most non-linear systems. Another 
"Chetayev function", which is actually a perturbed form of Chetayev's 
original function from /4/, has been proposed /I/, and it has been used 
to prove instability when the equilibrium position is an isolated 
critical point of the first non-trivial form of the potential energy 
expansion. 

The majority of problems concerning the onset of instability of 
equilibrium configurations of elastic systems have been considered from 
a quaslstatic point of view (see, e.g., /8, 9/). Problems of elastic 
stability and instability were considered in a dynamical setting in f2, 
51‘ where stability was investigated by Lyapunov's direct method. 
However, most of the results obtained in this branch of the field 
concern linear systems, and there axe extremely few publications dealing 
with the onset of instability in non-linear elastic 
Lyapunov's direct method. 

systems using 
This is because in an unstable elastic system 

the quadratic part of the potential energy may change sign, and 
therefore the analogues of Chetayev's function from /4/ are not usually 
suitable for solving these problems. Dynamic instability has been 
studied or a specific non-linearly elastic system /lo/, with the fact of 
instability established by using an analogue of the Chetayev function 
from /7/. 

This paper presents one more example of a study of dynamic 
instability crried out for a non-linearly elastic system by Lyapunov's 
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direct method. 

1. We consider the motion of a non-linear elastic thin rod (column), with its ends 
attached by hinges, in the 2, y plane. The shape of the rod is described by two functions 

u(S,t),U(S,t)(O~~Sl,t~o), representing non-dimensional displacements along the x and y 
axes. 

In non-dimensional variables, the Lagrangian of the system becomes /ll/ 

(1.1) 

Here 2 and U are the kinetic and potential energies of the system, respectively, dots 
and primes denote partial derivatives with respect to t and s, respectively, and @>O is 
a constant. The functions u(s,t) and 0 6, t) satisfy the boundary conditions 

U (0, t) = --u (1, t) = c > 0, u (0, t) = u (1, t) = 0 (1.2) 

The constant c>o is known as the end contraction parameter. 
To derive equations of motion for the system, we write down Hamilton's principle 

T 

6s Ldt=O 
0 

for variations &(s,t) and 6v (8, 0 satisfying the conditions 

6u (0, t) = 6u (1, t) = 6v (0, t) = 6v (1, t) = 0 

6u (s, 0) = 6u (s, T) = 6v (5, 0) = 6v (s, T) = 0 

(1.3) 

(1.4) 

The equations of motion now follow from (1.3) and (1.4): 

u" - p-1 (u' + '/&")' = 0, 0" + l_P - p-1 [v' (U' + Q")]' = 0 
(1.5) 

with additional boundary conditions 

u* (0, t) = u” (1, t) = 0 (1.6) 

It is obvious that Eqs.(1.5) with boundary conditions (1.2) and (1.6) have an equilb- 
rium solution 

U (s, t) = u. (s) = c (1 - 2s), v (s, t) = 0 (1.7) 

Setting u(s, t) = u,(s)+ w(s, t), tie obtain a system of equations for the perturbed motion 

with boundary conditions 

u” _ fj_lw” _ l/&l (@)’ = (I (1.8) 
v” + VIV + h”v” - p-1 [v’ (w’ + '/2v")l' = 0, h = Jag! 

w (0, t) = w (1, t) = v (0, t) = v (1, t) = VI (0, t) = UN (1, t) = 0 

We shall investigate the dynamic stability of the equilibrium modes (1.7) with respect 
to the parameter I, i.e., the stability of the trivial solution of system (1.8) 

w' (s, t) = U' (s, t) = w (s, t) = v (s, t) = 0 

with respect to certain integral characteristics of the norm type. 

2. Let us consider the Sobolev function spaces wpm [O, 11 /12/, men L(J) (where N 

is the set of natural numbers), p),l, \vPo[O,I] == L,[o,1], with norms 

II ‘P II% P = ( \ 1 C,I (m) (s) j”d.#‘p -:- ( s 1 ‘p (s) IP ds)‘/P (2.1) 

Here ( jcrn) denotes the m-th generalized derivative; integration with respect to s is 

always over the interval [O, I]. 
It follows from (1.1) that a necessary condition for T and U to be finite is that 

IL., U' E w,o IO, 11, L‘ E W,' 10, II, 1) E w,z IU, 11 n W,' [O, I], v'I > 0 



By the Embedding Theorem Wa2 [O, I] c W+' 10, I] /12/, and therefore 0 = W,* I('), 11. 

Let V(S) be a function in Cw[(j,l] which satisfies certain boundary conditions 1jI(pJ = 0, 
j = 1, . ..~ J, such that for some polynomial P(S) of degree at most m-1, if Zj[P1-_O(j= 1, 

.) J) then P 6) E 0. Let wFo , [o,i] denote the closure of the linear space of such func- 

tions (PE C"[O,Il in the norm (2.1) with p = 2. As follows from /13/, the norm on W,":,lO,fl 
may be given by 

/I (0 11% = (1 [ cp(“) Ml* ds)"' (2.2) 

For any ~20, the functions U, V are elements of the spaces w;,@ 10, ii, w:,@ [o,il, for 

which the role of the boundary operators r, (j = I. ._., J) is played by the boundary conditions 
in system (1.8). 

Let YE W&[O,il and suppose that the system of functions sin i( ks, k E N, satisfies the 

appropriate boundary conditions tj = V (j= 1, . . ..J). Expand p(s) in Fourier series with 
respect to the function (sinnks}km,r: 

'p (s) = Zrpr sin nks, ~&JR = 2 5 ‘p (8) sin nksds 

then it follows from (2.2) that 

/I ‘p //ia = (C (~~~z~~~*)‘~z/ I/z 12.3; 

Throughout, summation is performed from k=l to k=m. 

Let F*, ~ZEZ (where Z is the set of integers), denote the set of formal Fourier series 

9 (s) = l/&,+z: (9~ sin xks+$k cm nks) 

such that the norm 

11 ‘p ltj,, -= ($‘o’ + z bkjPrn bkz + $k*))“‘/ r/z 
(2.4) 

is finite, and FOm c Fm the subspace of elements such that qk= 0, kENU (0). 

Clearly, the spaces Fern, Fe-m are isomorphic to the spaces WE0 lo, 11, W$ lo, 11, where 

w;; IO, 31 is the dual of W& [O,1]. We observe, moreover, that FncFm and ii . /!m C II . Ik 

whenever n > m. 
Thus, we shall assume that II,.. I" E W& 10. I]. UI E W;,o [O, 11 PEW:,, [O, i] for any t 2 0, identify- 

ing these spaces with the corresponding subspaces of Fourier series Fzm. The boundary con- 
ditions in (1.8) are then automatically satisfied. 

Replacing the norm-type integral characteristics (2.2) by equivalent expressions in terms 
of the Fourier coefficients (2.3) has certain advantages in the context of stability analysis; 
this was first pointed out in /14/. 

Considering the phase space of the system, w:,@ lo, 11 x wg,o 1% iI X W:,@ IO. $1 x Wg,@ [O, $1, we 

introduce the natural norm 

3. Theorem 7. If h~(O,n), the trivial solution of (1.8) is stable relative to the 
norm II * II+. 

Proof. The total energy functional is 

1-f w;, VI’, WI, VI, WZ’, v2*, WPV v,, are bounded in the appropriate norms, the triangle in- 
equality and the Embedding Theorem 1121 imply the following estimate: 
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I @ (w$+, u2‘. (1’2. u*) - H fwl‘, q-3 WI. 4 I < c, (II w2’ - w, /lo $ 

II 4. - ullllo + II wup - Wl II1 -t II u2 -- 01 II,), c, > 0 

which is equivalent to continuity in the norm 11. /I*. 
Let us calculate the second variation of (3.1) at rd ; V. -= 1~ :: u 0 : 

6ZH z s {(SW’)~ + (6~‘)’ + (fm’f)Z ‘- p“ (6~‘)’ - h* (6~‘)“) ds 

Using (2.2)-(2.4), we get 

(3.2) 

where 6ul, are the coefficients of the Fourier expansion of 6vXfl<C,<1 - (~~~~.Consaquently, 
the quadratic form (3.2) is positive-definite in the norm /I ’ I\+. Proceeding by analogy with 
the proof that H is continuous, one can prove similarly that fl is twice continuously Frechet- 
differentiable in the appropriate space, and therefore there exist constants C,, C,> 0 such 

provided the perturbations w',u',w,u are sufficiently small in the norm /I - iI*. Consequently, 
since the total energy of the system is a first integral, the functional (3.1) may be used in 
the capacity of a Lyapunov functional, so that, by Lyapunov's generalized stability theorem 
for equilibrium solutions of distributed systems /l, 3/, the solution of (1.8) is stable 
relative to the norm Ij ./I*. 

4. Theorem 2. If hE(X, +-), hJ_X72, ?zEN, then the solution w' = I)' = w = Lj zz 0 is 
stable relative to the norm 11. II*. 

Proof. Consider the infinite-dimensional analogue of Chetayev's function from /4, 7,': 

where cf, = w +- @,F, '4 = v - pR,G, p >O being a small parameter whose value will be 
determined later, 

F = f&T, z -p-'w", G = r',U, = vrv + h2v" 

‘i denotes the Frechet derivative, U, -= '/p 1 (u" -1. fi-ltc'" -- h2u")ds is the quadratic part of the 

potential energy functional U - U,. H,, R, are selfadjoint Fredholm integral operators with 
kernels K,, K,, 

R,F = i K, (s, o)F (a)&, R,G = 1 K, (s, o)G(o)da 

K, (P. n) = K, (u, s), K, (s, CJ) = (s - l)s, u z lo, h-1, is Green's function of the second-order bound- 
ary-value problem 

I" _-: F, i(O) := f (1) = 0 

K, (9, 0.) = Kz (ci, s), K, (s, n) = '/,;! [(s - (r).' ;- 2s~ (s2 f up -t 2) -- (s i- o)‘l, (5 E 10, s] , is Green's func- 
tion of the fourth-order boundary-value problem 

g'" Y c, g (0) m: g (1) = g" (0) .= g" (1) = 0 

Put f = R,F. g = R,G. These expressions are "smoothed" Frechet gradients C&T,, O,U,, so 
(4.1) is an analogue of the Chetayev function proposed in /7/. 

Note that the components of the Chetayev vector field (see 14, 7/) have the sense of 
virtual displacements, and therefore, the smoothing of 'F and G answers two purposes: first, cI> 
and ?i' must be of the same smoothness class as W and v; second, they must satisfy the same 
boundary conditions. 

Suppose the contrary: the above equilibrium solution of system (1.8) is stable in 
Lyapunov's sense. Then for any fairly small (in the sense of the norm defined above) initial 
conditions j/ (ft.'. v', w, v)ll* < s for t ?- 0 where F>O is sufficiently small. 

By the Cauchy inequality, 
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Obviously, FE W&(0,11, GE W;:o[O,l]. Consider the Fourier expansions of the functions 

F, G, f, g in series of the functions {sin nks&: 

F = sF1, sin nks, G = Bh. sin nks, f = 3, sin nks, g = xg, sin nks 

then fr = -((nk)-2F,, gh. = (nk)-4 G,, which implies the equalities 

II fl'o = II F IL II g llo = II G II-1 

Applying (2.3), and (2.4), we obtain 

11 F ((+ < fi-’ I( w (lo < p-’ II w Ill, l/ G (1-c < 11 V Ito + A* 11 u 11-a < 
(1 + h’)ll VII2 

Consequently, we have an estimate 

I w I < MIEZ (4.2) 

where Ml> 0 depends only on the parameters of the problem. Using a device analogous to 

that used in the previous section, one can show that the functional (4.1) is continuous in 

the norm II . II*. 
We will now evaluate the derivative of (4.1) with respect to t along trajectories of 

Eqs.(l.8): 

w' = s (w"Q, + u"Y)ds + s (w'@. + d'4')d.s = 

- s (wT’,U -+ vT,U) ds - f; (f”f - g’vg) ds - 

IL j [fc, (u - u,) - gr, (U - U,)lds + 

s (w” ,- lP)ds + p J (w’f’ - u’g’)ds 

(4.3). 

Each of the integrals in this expression will now be estimated. 

a) - J (wV,u + vV,U) ds_T -2 (U__- U,) - ‘/,p-’ i (w’u” + ‘/.#)ds 

Using the Cauchy inequality, (2.1), (2.2) and the Embedding Theorem for W,2[0,11 into 

W,l [O, 11 /12/, we get 

I s V2~’ + ‘/d’Ws I < II v II:, 4 (II u III + ‘/t II u II:,,) 

and 

b) 
- k j (f”f - g’“g) ds = p s (I’“+ g”*)ds 

where f’ = R,F, g” = R&G, R,, R, are Fredholm integral operators with kernels KS, KI : 

R,F = j K, (s, o) F (0) da, RIG = s K4 (s, 0) G (G) do 

K, (s, a) = 
1 

(J, CJ E 10, sl 
cs-l,oE(s,1]' 

K, (s, 0) = K, (s, a) 

Using the Fourier expansions of F, G, f, g, one can show that 

II f’ Ilo’ + II d’ 110’ = II F II-12 + II G II-22, II F 11-l’ == B-” II w llla 

Let h E (nl, n (1 + I)), 1 EN. Expand the function V in Fourier series: 

(4.4) 

v = ,& sin nks 

II G 11-z’ = ‘/a (WY - ~*%c2 > M, @)\I v IIs*, 

O<nr,(i)<min{(l-(~),),, (l-(&y,3 

Consequently, 
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-p j (f”f - P’g) ds > M, (V (II w l/1* + II u l/21), Jf4 (A) > 0 

c) Put j,' =z r, (U - U,) = -'/,@‘" (u'")'. g,' z7 C,.(V - U2) = - p-’ (0’ (W’ i- ‘/2U’“))’ 

Integrating by parts and applying the Cauchy inequality, we obtain 

(4.5) 

I s (fl’f - g,‘g&s / =~ I J’ (g,g’ - JJ’W I < !! a I/o Ilg’ Ilo t- 
II fl II0 II f’ I/o. II f’ l/o = p-1 II u: Ill. II R’ II0 --. II G/IL3 < II c II-2 < 

II v II2 i- h” ll u Ilo < (1 -1. A% L’ll2 

By formulae (2.1)-(2.3) and the embedding theorems for u',z(O.ll into Wp' IO $1 CV,'[O, 11 1 7 

and c1 [O, 11 /12/, 
II fl II0 == ‘/zP-” I/ d2 II0 < 1/*P-1 II ZJ Ilf,, 0 i”l, II c’ll12t MS > 0 
II g1 II0 < p-1 (II v’w’ II0 i- ‘is II ur3 Ilo) G p-1 (II w III r$ I v’ I -I- 

‘/2 II JJII:,,, z< .If, II ZJ II2 (II w III -I II v llz’h .\I, > ‘1 

Consequently, 

-p J lfr, (U - U,) - gTz (U - U,)lds _a - pM, 11 u 11; (11 w II1 + 

II IJ lh”), .1f, > 0 

6) j. (u-~ -+ v'")ds = I/ w’ //02 + /I u’ j/o’ 

e) BY the Cauchy inequality, 

(4.Gj 

(4.7) 

Consequently, 

IL 1 (u'j' - u'g‘)ds > -plcl, (II u" II;' $ II v' llc2), M, > 0 
(4.8) 

Using (4.4)-(4.8), we estimate (4.3): 

Choose u < 1/111,. Since h#= nn, n E N, it follows that All(h)> 0. We shall assume 
that a>0 is so small that 

nJ1, (A) - 6% + @@,)(F + eZ) > 0 

It then follows from (4.9) that 

IV' 2; --2 (lJ - U,) 

If h> n, then U - U, may become negative in an arbitrarily small neighbourhood of 
zero in W:,, [O, 11 x Wi,, i0, 11. To prove this, it suffices to observe that the functional U, 

(the second variation at zero of the functional U- 0,) may take negative values. Indeed, 

tT,(O,sin ns) = '$ ~(XY~in~ns-~~~os2~s)ds= -$-(x2-AZ)< 0 

Consequently, there may be motions with negative energy reserve 8~ h<O for any 

t > 0. Let w (s, t), v (s, 1) be a solution of (1.8) with initial conditions IC" (s, 0) z 0, U' (s, 0) z 

0, 10 (~7 0) = ~0 (S), u C.9, U) = vu (s), II (0, 0, UJ~, u~)I/* < E and energy resxxve h < 0. Then for any 
t I:> 0 w' > -2h, whence it follows that WF ' -2ht, i.e., TV-++>0 as t-t+=, con- 
trary to the estimate (4.21, contradicting the assumed stability of the solution. 

We have thus proved that the equilibrium (1.7) is unstable when h> xc, h# nn, n E h-. 
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It was shown in 1111 that when k>n the equations have equilibrium solutions other than 
the trivial one (1.7). It is known that if an elastic system has an adjacent equilibrium 
state, then the trivial mode is unstable, corroborating the result just stated. It should 

also be mentioned that h= nn, no N, are bifurcation values of the parameter /ll/. 

5. As remarked above, a different choice of integral characeristics may produce dif- 
ferent stability results. From this point of view, a useful tool in proving that the trivial 
equilibrium (1.7) is unstable would be a smooth asmyptotic solution of (1.8), W(S, t), u (s, % 
W' (s, t), u' (s, t), such that these functions tend to zero uniformly in s together with their 
partial derivatives with respect to s of any order as t++oo. By virtue of the invariance 
of Eqs.(l.8) under time “reversal”, this would mean that the trivial solution of (1.8) is 
unstable relative to any reasonably constructed integral characteristic. In the finite- 
dimensional case, asymptotic solutions of a non-linear sytem may be constructed by means of 
Lyapunov's first method /15/, which makes it possible to find such solutions in the form of 
exponential series, whose convergence is guaranteed by suitable theorems. 

Let us determine conditions for the existence of a formal asymptotic solution of (1.8) 
in the form of exponential series: 

w (s, t) = WI (S)P' + Wz (s)e-*=f + . . ., wj (s) = Zwjh sin nks (5.1) 
u (8, t) = 0, (s)e+ + uz (s)e-*“’ + . . ., vi (s) = Evjr sin nks 

The series (5.l)are analogous to these employed in Lyapunov's first method; if they were 
unfiormly convergent together with the corresponding series of partial derivatives, this 
would imply the existence of an asymptotic solution. 

Theorem 3. If h>n and the quotient hfn is irrational, Eqs.(l.8) have a formal 
asymptotic solution in the form (5.1). 

Proof. Substituting (5.1) into (1.8), we obtain, on the left and right, series in 
integer powers of p%t . Let us compare the coefficients of e-jut. 

For j =I, we have 
c&u1 - B%r" = 0, a%, + vrvr + h%," = 0 

The equalities will hold if we set 

lL'l (s) = 0, v, (s) = sin ns, OL = n l/h* - n" 

For j>2, we have 
j2c2u'I - p-luljfl = Wj, j?&?j + fijIV + xzui" = v, 

where the functions W1 (s)g vj (s) are polynomials in ul, . . .! wj-l, VI, . . a, uj-I 
they satisfy the boundary conditions, can be expanded in Fourier series 

Wj (s) = xWjyj, sin nks, Vj (s) = xVj, sin nks 

It then follows from (5.3) that 

(5.2) 

(5.3) 

which, since 

(5.4) 

The condition 
k2n2 (k%” - h*) Z 0 

hfs$ Q(Q (where Q is the set of rational numbers) guarantees that i'a" + 
for any j,kE N and hence all the coefficients of the series (5.1) may 

be determined inductively. 
The mechanical meaning of the condition J.lne&Q is that there is no exact integral 

resonance between the characteristic exponents of the system to a first approximation. In 
the finite-dimensional case one can avoid resonance phenomena while constructing asymptotic 
solutions by letting the generating solution be a solution of the linearized system with 
minimum characteristic exponent. 
practically always unbounded, 

However, the spectrum of an infinite-dimensional system is 
and therefore this device is hardly effective in the case in 

question. Indeed, it is evident from (5.4) that the problem of "small denominators" /16/ 
may be ecnountered in the attempt to determine the coefficients of the series (5.1), so that 
the question of whether these series are convergent is by no means trivial. 
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FORCED OSCILLATIONS OF A NON-LINEAR SYSTEM WITH A 

REPULSIVE POSITIONAL FORCE' 

A.A. ZEVIN and L.A. FILONENKO 

Non-linear systems with one degree of freedom, in which the positional 

force is directed away from the equilibrium position of the system, are 
considered. The existence of forced periodic oscillations, their 

Lyapunov stability, and the behaviour of amplitude-frequency 

characteristics are investigated. It is shown that stable periodic 
oscillations are possible in the case when the positional force has 
non-monotonic properties. Forced oscillations of a pendulum with respect 
to the upper equilibrium position are considered as an example. 

Systems with repulsive positional forces appear not to have been previously considered 
in the literature. The well-known analytical methods of non-linear mechanics 1/l, 21 etc.) 
are based on the assumption of the nearness of the solutions under investigation to solution 
of the corresponding autonomous system, and are inapplicable to our systems because there 

are no periodic generating solutions. In this paper a qualitative investigation is made of 
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